Data Manipulation and Cleaning

Elijah Mercer

Data Science Fellow 2024-2025
School of Information

Elijah, originally from Newark, New Jersey, now resides in San Francisco, California, dedicated to social and juvenile justice. With a Criminology degree from American University, he began as a research intern at the Investigative Reporting Workshop, focusing on the Digital Divide.

Teaching in Baltimore with Teach for America reinforced his belief in research and data for marginalized communities. In roles at the Coalition Against Insurance Fraud, New York Police Department, and San Francisco District Attorney’s Office, Elijah used data to combat crime. Now...

Christian Caballero

Data Science Fellow 2024-2025
Political Science

Christian Caballero is a Political Science PhD student at the University of California, Berkeley. His research focuses on American politics and political behavior. In particular, he studies the ways in which social networks influence processes of political persuasion and democratic deliberation, as well as how political ideologies develop within subcultures.

He holds a B.A. in Politics and Sociology from New York University and an M.A. in Political Science from the University of California, Berkeley.

Why Data Disaggregation Matters: Exploring the Diversity of Asian American Economic Outcomes Using Public Use Microdata Sample (PUMS) Data

February 11, 2025
by Taesoo Song. Asian Americans are often overlooked in discussions of racial inequality due to their high average socioeconomic attainment. Many academic and policy researchers treat Asians as a single racial category in their analysis. However, this broad categorization can mask significant within-group disparities, leaving many disadvantaged individuals without access to vital resources and policy support. Song emphasizes the importance of data disaggregation in revealing Asian American inequalities, particularly in areas like income and homeownership, and demonstrates how breaking down these categories can lead to more targeted and effective policy solutions.

Suraj Nair

Data Science Fellow 2023-2024
School of Information

I am a PhD Student at the School of Information. My research interests lie at the intersection of development economics and machine learning, with a focus on the use of large scale digital data and new computational tools to study pressing issues in global development.

María Martín López

Data Science Fellow 2023-2024
Psychology

María Martín López is a PhD student in the Cognition area within the Department of Psychology. Her research relates to cognitive computational and quantitative models of individual differences in behaviors, thoughts, and emotions. She is particularly interested in how we can create and leverage novel algorithms to understand, measure, and predict processes relating to externalizing psychopathology (e.g. impulsivity, aggression, substance use). She answers these questions using a range of computational and quantitive models including AI, NLP, SEM, time series analysis, multi-level...

Kamya Yadav

Senior Data Science Fellow 2024-2025, Data Science Fellow 2023-2024
Political Science

Kamya is a third year PhD student in the Department of Political Science. Using multimethod research, she studies gender, representation, and political parties in India to understand the barriers and pathways to women's political participation and representation. She has a BA in Politics from Princeton University.

Lauren Chambers

Consultant
School of Information

Lauren Chambers is a Ph.D. student at the Berkeley School of Information, where she studies the intersection of data, technology, and sociopolitical advocacy with Prof. Deirdre Mulligan. Previously Lauren was the staff technologist at the ACLU of Massachusetts, where she explored government data in order to inform citizens and lawmakers about the effects of legislation and political leadership on our civil liberties. Lauren received her Bachelor's from Yale in 2017, where she double-majored in astrophysics and African American studies, and she spent two years after graduation in...

Jailynne Estevez

Consultant
Info & Data Science MIDS

Jailynne Estevez is a Data Analyst and a prospective Masters in Information and Data Science candidate at UC Berkeley. With a bachelor's in Public Policy, she brings a diverse skill set to her pursuits, demonstrating aptitude in data analysis and programming.

Thomas Lai

Consultant
School of Information

I am a Product Engineer passionate about applying engineering, data science, machine learning, and problem-solving principles to improve device performance and solve complex challenges. With experience in statistical analysis, lab bench automation, and Python scripting, I have developed a strong technical skill set that allows me to make meaningful contributions to any project. Beyond my work, I am also passionate about exploring new topics and ideas, from the latest technology trends to how to improve the overall well-being of humans. I enjoy applying the first principle to any...

Gaby May Lagunes

Consultant
ESPM

Hello! I’m Gaby (she/her). I am PhD student at the ESPM department, I hold a masters in Data Science and Information from the Berkeley ISchool and I have 5+ years of industrial experience in different data roles. Before that I got a masters in Engineering for International Development and an undergraduate degree in Physics from University College London. And somewhere between all that I got married, survived the pandemic, and had two awesome boys. I’m very excited to help you use data to enhance your work and your experience here at Berkeley!