The D-Lab is closed Wednesday, November 26 - Friday, November 28 for the holiday break this week. We will not have a virtual front desk, workshops, or any consultations on our closed days.
by Carly Karrick. Viruses play important roles in evolution and influence ecosystems and host health. However, isolating and studying them can be difficult. In lieu of using resource-intensive methods to concentrate viruses into a “virome,” bulk sequencing methods include data from all biological entities present in a sample. In this tutorial, we explore an approach to mine viral sequences from publicly available bulk RNA-Seq data. The output from this analysis paves the way for future statistical analyses comparing viral communities in different contexts. This approach can be applied to other datasets, including studies of human health.
Participants in this workshop will learn about some of the issues surrounding the collection of health statistics, and will also learn about authoritative sources of health statistics and data. We will look at tools that let you create custom tables of vital statistics (birth, death, etc.), disease statistics, health behavior statistics, and more.
Participants in this workshop will learn about some of the issues surrounding the collection of health statistics, and will also learn about authoritative sources of health statistics and data. We will look at tools that let you create custom tables of vital statistics (birth, death, etc.), disease statistics, health behavior statistics, and more.
Participants in this workshop will learn about some of the issues surrounding the collection of health statistics, and will also learn about authoritative sources of health statistics and data. We will look at tools that let you create custom tables of vital statistics (birth, death, etc.), disease statistics, health behavior statistics, and more.
Participants in this workshop will learn about some of the issues surrounding the collection of health statistics, and will also learn about authoritative sources of health statistics and data. We will look at tools that let you create custom tables of vital statistics (birth, death, etc.), disease statistics, health behavior statistics, and more.
by Paige Park. Our capacity to accurately predict social outcomes is increasing. Deep neural networks and artificial intelligence are crucial technologies pushing this progress along. As these tools reshape how social prediction is done, social scientists should feel comfortable engaging with them and meaningfully contributing to the conversation. But many social scientists are still unfamiliar with and sometimes even skeptical of deep learning. This tutorial is designed to help close that knowledge gap. We’ll walk step-by-step through training a simple neural network for a social prediction task: forecasting population-level mortality rates.
Marina is a master's student in the Health and Social Behavior division of the School of Public Health. She has extensive experience in ATLAS.ti and can help you get the most out of the program. She is passionate about data visualization, and is happy to help with related questions and questions on qualitative methods.
Monica is a third-year Ph.D. candidate in the Environmental Science, Policy, and Management program. She uses computational tools to study the evolution and ecology of agricultural plant pathogens. Previously, she worked on a data science team at a biotech company in Boston.
Elaine (Hua) Luo is a PhD candidate in the Graduate School of Education, School Psychology PhD program. Her research interests focus on adolescents’ identity development and well-being under the transactional influence of entities in their socio-ecological systems. In her research, Elaine has utilized not only quantitative but also qualitative and mixed methods to study her research topics of interest. Before coming to Berkeley, Elaine earned her Master’s in Human Development and Psychology from Harvard Graduate School of Education and her Bachelor of Art in Education Sciences from...
by Ruiji Sun. We introduce and apply regression discontinuity to thermal comfort field studies, which are typically observational. The method utilizes policy thresholds in China, where the winter district heating policy is based on cities' geographical locations relative to the Huai River. Using the regression discontinuity method, we quantify the causal effects of the experiment treatment (district heating) on the physical indoor environments and subjective responses of building occupants. In contrast, using conventional correlational analysis, we demonstrate that the correlation between indoor operative temperature and thermal sensation votes does not accurately reflect the causal relationship between the two. This highlights the importance of causal inference methods in thermal comfort field studies and other observational studies in building science where the regression discontinuity method might apply.