DSAI Cohorts

Navigating AI Tools in Open Source Contributions: A Guide to Authentic Development

December 17, 2024
by Sahiba Chopra. The rise of ChatGPT has transformed how developers approach their work - but it might be hurting your reputation in the open-source community. While AI can supercharge your productivity, knowing when not to use it is just as crucial as knowing how to use it effectively. This guide reveals the unspoken rules of AI usage in open source, helping you navigate the fine line between leveraging AI and maintaining authenticity. Learn when to embrace AI tools and when to rely on your own expertise, plus get practical tips for building trust in the open-source community.

Why Data Disaggregation Matters: Exploring the Diversity of Asian American Economic Outcomes Using Public Use Microdata Sample (PUMS) Data

February 11, 2025
by Taesoo Song. Asian Americans are often overlooked in discussions of racial inequality due to their high average socioeconomic attainment. Many academic and policy researchers treat Asians as a single racial category in their analysis. However, this broad categorization can mask significant within-group disparities, leaving many disadvantaged individuals without access to vital resources and policy support. Song emphasizes the importance of data disaggregation in revealing Asian American inequalities, particularly in areas like income and homeownership, and demonstrates how breaking down these categories can lead to more targeted and effective policy solutions.

Field Experiments in Corporations

January 28, 2025
by Yue Lin. How do social science researchers conduct field experiments with private actors? Yue Lin provides a brief overview of the recent developments in political economy and management strategy, with a focus on filing field experiments within private corporations. Unlike conventional targets like individuals and government agencies, private companies are an emergent sweet spot for scholars to test for important theories, such as sustainability, censorship, and market behavior. After comparing the strengths and weaknesses of this powerful yet nascent method, Lin brainstorms some practical solutions to improve the success rate of field experimental studies. She aims to introduce a new methodological tool in a nascent research field and shed some light on improving experimental quality while adhering to ethical standards.

Teaching Data Science as a Tool for Empowerment

February 18, 2025
by Elijah Mercer. Data literacy is a powerful tool for empowerment, especially for historically marginalized communities. Through Data Cafecito at Roadmap to Peace and helping teach Data 4AC at UC Berkeley, Elijah Mercer helps bridge the gap between data, advocacy, and justice. Data Cafecito fosters culturally responsive data practices for Latinx-serving organizations, while Data 4AC challenges students to critically analyze data’s role in systemic inequities. Drawing from his experience in education, Mercer uses interactive teaching methods to make data accessible and meaningful. By centering storytelling and community-driven insights, he aims to equip individuals with the skills to use data for social change.

Which Coin Should I Flip? The Multi-Arm Bandit

February 4, 2025
by Bruno Smaniotto. Consider the following game: You are given the option to choose between two coins to flip. These coins are possibly biased, so the probability of getting Heads for each coin might differ from 50/50. Each time that you flip Heads, you win one dollar. There are a total of 10 rounds. Which coin should you flip at each round? In this blog post, we will analyze this problem through the lens of a famous decision-making algorithm called the Multi-Arm Bandit, exploring how to structure the problem mathematically and how it can be solved for particular examples.

Causal Effect Estimation in Observational Field Studies of Thermal Comfort

April 1, 2025
by Ruiji Sun. We introduce and apply regression discontinuity to thermal comfort field studies, which are typically observational. The method utilizes policy thresholds in China, where the winter district heating policy is based on cities' geographical locations relative to the Huai River. Using the regression discontinuity method, we quantify the causal effects of the experiment treatment (district heating) on the physical indoor environments and subjective responses of building occupants. In contrast, using conventional correlational analysis, we demonstrate that the correlation between indoor operative temperature and thermal sensation votes does not accurately reflect the causal relationship between the two. This highlights the importance of causal inference methods in thermal comfort field studies and other observational studies in building science where the regression discontinuity method might apply.

The Evolving Landscape of Web Scraping on Social Media Platforms

March 11, 2025
by Nanqin Ying. As social media platforms enforce stricter policies against unauthorized data collection, businesses and researchers must adapt to new API-based access models. This shift limits large-scale web scraping, impacting industries reliant on social media insights. The transition to paid API access and stringent compliance measures raises concerns about accessibility, cost, and ethical data collection. This article explores the evolving regulatory landscape, the enforcement of API restrictions, and how organizations can legally and ethically navigate data access in a world where scraping is becoming increasingly difficult. Understanding these changes is crucial for staying compliant while maintaining valuable insights from social media data.