Machine Learning

Need help with Machine Learning?

Visit Drop-in Hours or Schedule a Consultation: <link to an embedded google calendar OB widget or google form widget> 

Below are the consultant we have available with Machine Learning and other expertise listed.

Racism Narratives in Medical Literature

Systemic racism is a driving factor in unequal health outcomes, but it is rarely the subject of study in top medical journals (see a 2021 analysis by Krieger et al.). This project, a collaboration between the UC Berkeley D-Lab and the American Medical Association's Center for Health Equity, aims to measure progress in acknowledging, studying, & dismantling racism by creating tools to track racism-related narratives in influential medical research.

Erin Manalo-Pedro

Research Fellow
Community Health Sciences (UCLA)

Erin Manalo-Pedro is a Ph.D. student in the Department of Community Health Sciences at the UCLA Fielding School of Public Health with a minor in education. She focuses her racial health equity research on curriculum, the health workforce, and political interventions for communities of color. Drawing from Public Health Critical Race Praxis and Pinayism, she aims to use methods, like natural language processing and counter storytelling, to document the subtleties of structural racism and resistance from marginalized groups.

To guide her interdisciplinary approach, Erin leverages
...

Swetha Pola

Research Fellow
School of Information

Swetha (she/her) is a 5th Year Master of Information and Data Science student at the School of Information, with experience in Cognitive Science, Psychology research, and product management. Her research interests include building ethical, transparent AI and the impacts of technologies (specifically, mass media, surveillance, and algorithms of bias) on longitudinal behavioral health. She is happy to help with questions on Python, R, SQL, machine learning, neural networks, statistical analysis, and research design!

...

Python Deep Learning: Parts 1-2

June 7, 2022, 1:00pm
This workshop presents a brief history of Artificial Neural Networks (ANNs) and an explanation of the intuition behind them; a step-by-step reconstruction of a very basic ANN, and then how to use the scikit-learn library to implement an ANN for solving a classification problem.
See event details for participation information.

Python Introduction to Machine Learning: Parts 1-2

May 24, 2022, 1:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.
See event details for participation information.

What is MLOps? An Introduction to the World of Machine Learning Operations

May 10, 2022
More than ever, AI and machine learning (ML) are integral parts of our lives and are tightly coupled with the majority of the products we use on a daily basis. We use AI/ML in almost everything we can think of, from advertising to social media and just going about our daily lives! With the prevalent use of these tools and models, it is essential that, as IT systems and software became a disciplined practice in terms of development, maintainability, and reliability in the early 2000s, ML systems follow a similar trend. The field focused on developing such practices is currently loosely defined under many different titles (e.g., machine learning engineering, applied data science), but is most commonly known as MLOps, or Machine Learning Operations.

Public Talk: Teaching Bias through Word Embeddings

May 16, 2022, 9:00am
This talk by guest speaker, Tom van Nuenen, discusses findings from the Discovering and Attesting Digital Discrimination project which focuses on biases in Machine Learning which proposed a data-driven approach to discover language biases encoded in the vocabulary of discourse communities on social media.

Cheng Ren

Senior Data Science Fellow
School of Social Welfare

Cheng Ren is a D-Lab Senior Data Science Fellow and a Ph.D. student at the School of Social Welfare. His research interests are community engagement and assessment, nonprofit development, community database, computational social welfare, and data for social goods.

Python Introduction to Machine Learning: Parts 1-2

April 25, 2022, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Deep Learning: Parts 1-2

March 28, 2022, 9:00am
This workshop presents a brief history of Artificial Neural Networks (ANNs) and an explanation of the intuition behind them; a step-by-step reconstruction of a very basic ANN, and then how to use the scikit-learn library to implement an ANN for solving a classification problem.