Machine Learning

Need help with Machine Learning?

Visit Drop-in Hours or Schedule a Consultation: <link to an embedded google calendar OB widget or google form widget> 

Below are the consultant we have available with Machine Learning and other expertise listed.

Python Deep Learning

March 4, 2025, 2:00pm
In this workshop, we will convey the basics of deep learning in Python using keras on image datasets. You will gain a conceptual grasp of deep learning, work with example code that they can modify, and learn about resources for further study.

Andrea Lukas

UTech
Computer Science
Data Science

Hi everyone! I'm Andrea Lukas, a 3rd-year student majoring in Computer Science and Data Science at UC Berkeley. I'm passionate about UI/UX design and AI-centered human-computer interaction, and I'm actively involved in Computational Cognition research using Large Language Models (LLMs). As the Manager at D-Lab, I'm excited to contribute to the team by optimizing operations and fostering collaboration.

Outside of my academic and professional work, I’m an active member of Berkeley's Dance Community, where I participate in various teams. I also enjoy discovering new matcha spots and...

Sanjana Gajendran

Consultant
MIMS

I'm a second year MIMS Student with a focus on Data Science and Natural Language Processing. During the Summer 2023, I interned at Genentech as a Data Science Intern.

Thomas Lai

Consultant
School of Information

I am a Product Engineer passionate about applying engineering, data science, machine learning, and problem-solving principles to improve device performance and solve complex challenges. With experience in statistical analysis, lab bench automation, and Python scripting, I have developed a strong technical skill set that allows me to make meaningful contributions to any project. Beyond my work, I am also passionate about exploring new topics and ideas, from the latest technology trends to how to improve the overall well-being of humans. I enjoy applying the first principle to any...

Gaby May Lagunes

Consultant
ESPM

Hello! I’m Gaby (she/her). I am PhD student at the ESPM department, I hold a masters in Data Science and Information from the Berkeley ISchool and I have 5+ years of industrial experience in different data roles. Before that I got a masters in Engineering for International Development and an undergraduate degree in Physics from University College London. And somewhere between all that I got married, survived the pandemic, and had two awesome boys. I’m very excited to help you use data to enhance your work and your experience here at Berkeley!

Nicolas Nunez-Sahr

Consultant
Statistics

I lived in Santiago, Chile until I graduated from high school, and then moved to the US for undergrad at Stanford, where I obtained a Bachelor’s degree from the Statistics Department. I then worked as a Data Scientist in an NLP startup that was based in Bend, OR, which analyzed news articles. I love playing soccer, volleyball, table tennis, flute, guitar, latin music, and meeting new people. I want to get better at mountain biking, whitewater kayaking, chess and computer vision. I find nature astounding, and love finding sources of inspiration.

Renata Barreto, JD

Research Fellow
Berkeley Law

Renata has a JD and is a Ph.D. candidate at Berkeley, where her research focuses on the harms caused by machine learning models on marginalized groups. She is trained in computational social science and has interned at Twitter and Facebook. She enjoys learning both programming and human languages.

Finley Golightly

IT Support & Helpdesk Supervisor
Applied Mathematics

Finley joined D-Lab as full-time staff launching their career in Data Science after graduating with a Bachelor's degree in Applied Math from UC Berkeley.

They have been with D-Lab since Fall 2020, formerly as part of the UTech Management team before joining as full-time staff in Fall 2023. They love the learning environment of D-Lab and their favorite part of the job is their co-workers! In their free time, they enjoy reading, boxing, listening to music, and playing Dungeons & Dragons. Feel free to stop by the front desk to ask them any questions or...

Python Machine Learning Fundamentals: Parts 1-2

April 8, 2025, 12:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

R Machine Learning with tidymodels: Parts 1-2

February 24, 2025, 3:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.