Programming Languages

R Geospatial Fundamentals: Raster Data

February 23, 2023, 10:00am
Geospatial data are an important component of data visualization and analysis in the social sciences, humanities, and elsewhere. The R programming language is a great platform for exploring these data and integrating them into your research. This workshop focuses on fundamental operations for reading, writing, manipulating and mapping raster data, which typically represents geographic information in a grid of regular sized cells.

R Fundamentals: Parts 1-4

May 2, 2022, 10:00am
This workshop is a four-part introductory series that will teach you R from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the open-sourced R Studio software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

R Introduction to Machine Learning with tidymodels: Parts 1-2

November 16, 2021, 1:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Web Scraping

March 28, 2023, 2:00pm
In this workshop, we cover how to scrape data from the web using Python. Web scraping involves downloading a webpage's source code and sifting through the material to extract desired data.

R Fundamentals: Parts 1-4

September 20, 2022, 1:00pm
This workshop is a four-part introductory series that will teach you R from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the open-sourced R Studio software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

Stata Fundamentals: Parts 1-3

February 13, 2024, 10:00am
This workshop is a three-part introductory series that will teach you Stata from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the Stata software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

R Visualization

February 10, 2022, 5:00pm
This workshop will provide an introduction to graphics in R with ggplot2. Participants will learn how to construct, customize, and export a variety of plot types in order to visualize relationships in data. We will also explore the basic grammar of graphics, including the aesthetics and geometry layers, adding statistics, transforming scales, and coloring or panelling by groups. You will learn how to make histograms, boxplots, scatterplots, lineplots, and heatmaps as well as how to make compound figures.

Python Fundamentals: Parts 1-4

October 11, 2022, 3:00pm
This four-part, interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

R Machine Learning with tidymodels: Parts 1-2

February 27, 2024, 10:00am
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Geospatial Fundamentals with QGIS: Parts 1-2

March 1, 2022, 3:00pm
This workshop will introduce methods for working with geospatial data in QGIS, a popular open-source desktop GIS program that runs on both PCs and Macs as well as linux computers. Participants will learn how to load, query and visualize point, line and polygon data. We will also introduce basic methods for processing spatial data, which are the building blocks of spatial analysis workflows. Coordinate reference systems and map projections will also be introduced.