Software Tools

R Data Visualization

March 29, 2023, 2:00pm
This workshop will provide an introduction to graphics in R with ggplot2. Participants will learn how to construct, customize, and export a variety of plot types in order to visualize relationships in data. We will also explore the basic grammar of graphics, including the aesthetics and geometry layers, adding statistics, transforming scales, and coloring or panelling by groups. You will learn how to make histograms, boxplots, scatterplots, lineplots, and heatmaps as well as how to make compound figures.

R Advanced Data Wrangling: Parts 1-2

October 5, 2021, 2:00pm
Advanced Data Wrangling aims to help students to learn powerful data wrangling tools and techniques in R to wrangle data with less pain and more fun. This workshop will show how R can make your data wrangling process faster, more reliable, and interpretable.

R Data Wrangling and Manipulation

November 16, 2021, 12:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

R Machine Learning with tidymodels: Parts 1-2

October 9, 2023, 2:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Visualization (5pm-8pm)

March 31, 2022, 5:00pm
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

Python Data Visualization Pilot: Parts 1-2

March 5, 2024, 2:00pm
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

R Geospatial Fundamentals: Vector Data, Parts 1-2

February 16, 2023, 10:00am
Geospatial data are an important component of data visualization and analysis in the social sciences, humanities, and elsewhere. The R programming language is a great platform for exploring these data and integrating them into your research. This workshop focuses on fundamental operations for reading, writing, manipulating and mapping vector data, which encodes location as points, lines and polygons.

Python Visualization

October 22, 2021, 10:00am
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

Bash + Git: Introduction

September 13, 2023, 1:00pm
This workshop will start by introducing you to navigating your computer’s file system and basic Bash commands to remove the fear of working with the command line and to give you the confidence to use it to increase your productivity. And then working with Git, a powerful tool for keeping track of changes you make to the files in a project.

R Data Wrangling and Manipulation: Parts 1-2

February 1, 2022, 9:00am
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.