Data Manipulation and Cleaning

Finley Golightly

IT Support & Helpdesk Supervisor
Applied Mathematics

Finley joined D-Lab as full-time staff launching their career in Data Science after graduating with a Bachelor's degree in Applied Math from UC Berkeley.

They have been with D-Lab since Fall 2020, formerly as part of the UTech Management team before joining as full-time staff in Fall 2023. They love the learning environment of D-Lab and their favorite part of the job is their co-workers! In their free time, they enjoy reading, boxing, listening to music, and playing Dungeons & Dragons. Feel free to stop by the front desk to ask them any questions or...

Python Web Scraping

March 5, 2025, 10:00am
In this workshop, we cover how to scrape data from the web using Python. Web scraping involves downloading a webpage's source code and sifting through the material to extract desired data.

Python Web APIs

March 3, 2025, 10:00am
In this workshop, we cover how to extract data from the web with APIs using Python. APIs are often official services offered by companies and other entities, which allow you to directly query their servers in order to retrieve their data. Platforms like The New York Times, Twitter and Reddit offer APIs to retrieve data.

R Data Wrangling and Manipulation: Parts 1-2

April 22, 2025, 4:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

R Machine Learning with tidymodels: Parts 1-2

February 24, 2025, 3:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

R Data Wrangling and Manipulation: Parts 1-2

April 7, 2025, 2:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

R Data Wrangling and Manipulation: Parts 1-2

February 10, 2025, 10:00am
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

Python Data Wrangling and Manipulation with Pandas: Parts 1-2

February 10, 2025, 2:00pm
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

R Data Wrangling and Manipulation: Parts 1-2

November 18, 2024, 2:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

Python Web Scraping

October 24, 2024, 2:00pm
In this workshop, we cover how to scrape data from the web using Python. Web scraping involves downloading a webpage's source code and sifting through the material to extract desired data.