Data Manipulation and Cleaning

Python Data Wrangling and Manipulation with Pandas

April 18, 2022, 10:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Python Data Wrangling and Manipulation with Pandas

January 23, 2023, 2:00pm
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

R Machine Learning with tidymodels: Parts 1-2

October 9, 2023, 2:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

R Advanced Data Wrangling: Parts 1-2

October 5, 2021, 2:00pm
Advanced Data Wrangling aims to help students to learn powerful data wrangling tools and techniques in R to wrangle data with less pain and more fun. This workshop will show how R can make your data wrangling process faster, more reliable, and interpretable.

Skyler Yumeng Chen

Data Science for Social Justice Fellow 2024
Haas School of Business

Skyler is a Ph.D. student in Behavioral Marketing at the Haas School of Business. Her research centers on consumer behavior and judgment and decision-making, with a keen interest in both experimental methods and data science techniques. She holds a B.A. in Economics and a B.S. in Data Science from New York University Shanghai.

Grace Hu

Data Science for Social Justice Fellow 2024
Bioengineering

Grace is a 3rd year Bioengineering PhD candidate in the joint UC Berkeley-UCSF Graduate Program. Her research lies at the nexus of computational design and 3D-bioprinting to advance tissue engineering for regenerative medicine. She previously studied Materials Science and Engineering (B.S.) and Computer Science (M.S.) at Stanford University, where she investigated printable batteries to power an ultra-affordable scanning electron microscope and explored computer science education research by developing AI models to augment teaching ability.

In her free time she...

Hugh Kadhem

Mathematics

Hugh Kadhem is a Ph.D. student in Applied Mathematics, with broad research interests in computational quantum physics and high-performance scientific computing.

Introduction to Propensity Score Matching with MatchIt

April 1, 2024
by Alex Ramiller. When working with observational (i.e. non-experimental) data, it is often challenging to establish the existence of causal relationships between interventions and outcomes. Propensity Score Matching (PSM) provides a powerful tool for causal inference with observational data, enabling the creation of comparable groups that allow us to directly measure the impact of an intervention. This blog post introduces MatchIt – a software package that provides all of the necessary tools for conducting Propensity Score Matching in R – and provides step-by-step instructions on how to conduct and evaluate matches.

What Are Vowels Made Of? Graphing a Classic Dataset with R

February 13, 2024
by Anna Björklund. Vowels are all around us. Mainstream US English has around twelve unique vowels. How can our brains tell these sounds apart? This blog post will help you answer this question by plotting vowel data from a classic American English dataset by Peterson and Barney (1952).

How can we use big data from iNaturalist to address important questions in Entomology?

February 26, 2024
by Leah Lee. Large-scale geographic data over time on insect diversity can be used to answer important questions in Entomology. Open-source, open-access citizen science platforms like iNaturalist generate huge amounts of data on species diversity and distribution at accelerating rates. However, unstructured citizen science data contain inherent biases and need to be used with care. One of the efforts to validate big data from iNaturalist is to cross-check with systematically collected data, such as museum specimens.