Data Science

Python Data Wrangling and Manipulation with Pandas

June 25, 2024, 10:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Stata Fundamentals: Parts 1-3

August 15, 2022, 9:00am
This workshop is a three-part introductory series that will teach you Stata from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the Stata software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

Python Web Scraping

November 2, 2023, 2:00pm
In this workshop, we cover how to scrape data from the web using Python. Web scraping involves downloading a webpage's source code and sifting through the material to extract desired data.

Python Fundamentals: Parts 1-4

November 7, 2022, 11:00am
This four-part, interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

R Fundamentals: Parts 1-4

January 8, 2024, 10:00am
This workshop is a four-part introductory series that will teach you R from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the open-sourced R Studio software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

Python Text Analysis Fundamentals: Parts 1-3

February 15, 2022, 2:00pm
This three-part workshop series will prepare participants to move forward with research that uses text analysis, with a special focus on humanities and social science applications.

Python Fundamentals: Parts 1-3

June 13, 2023, 11:00am
This three-part interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

Qualtrics Fundamentals

February 20, 2024, 10:00am
Qualtrics is a powerful online tool available to Berkeley community members that can be used for a range of data collection activities. Primarily, Qualtrics is designed to make web surveys easy to write, test, and implement, but the software can be used for data entry, training, quality control, evaluation, market research, pre/post-event feedback, and other uses with some creativity.

Qualtrics Fundamentals

March 29, 2022, 3:00pm
Qualtrics is a powerful online tool available to Berkeley community members that can be used for a range of data collection activities. Primarily, Qualtrics is designed to make web surveys easy to write, test, and implement, but the software can be used for data entry, training, quality control, evaluation, market research, pre/post-event feedback, and other uses with some creativity.

Python Machine Learning Fundamentals: Parts 1-2

April 16, 2024, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.