Data Sources

Excel Data Analysis: Introduction

February 27, 2024, 9:00am
This is a three-hour introductory workshop that will provide an overview of Excel, with no prior experience assumed. Attendees will learn how to use functions for handling data and making calculations, how to build charts and pivot tables, and more.

Python Data Wrangling and Manipulation with Pandas

February 15, 2022, 9:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Excel Data Analysis: Charts, Pivot Tables, and VLOOKUP

September 14, 2022, 4:00pm
This three-hour workshop will cover charts in more detail, review pivot tables, and the widely-used VLOOKUP function. We recommend first taking the introductory workshop Excel Data Analysis: Introduction.

Excel Data Analysis: Introduction

May 30, 2023, 9:30am
This is a three-hour introductory workshop that will provide an overview of Excel, with no prior experience assumed. Attendees will learn how to use functions for handling data and making calculations, how to build charts and pivot tables, and more.

Excel Data Analysis: Introduction

October 16, 2023, 1:00pm
This is a three-hour introductory workshop that will provide an overview of Excel, with no prior experience assumed. Attendees will learn how to use functions for handling data and making calculations, how to build charts and pivot tables, and more.

Propensity Score Matching for Causal Inference: Creating Data Visualizations to Assess Covariate Balance in R

June 10, 2024
by Sharon Green. Although some people consider randomized experiments the gold standard, in many cases, it would be highly unethical to assign individuals to harmful exposures to measure their effects. Modern causal inference techniques help scientists to estimate treatment effects using observational data. In particular, propensity score matching helps scientists estimate causal effects using observational data by matching individuals so that the “treatment” and “control” groups are balanced on measured covariates. After implementing propensity score matching, data visualizations make it easier to assess the quality of the matches before estimating effects. This blog post is a tutorial for implementing propensity score matching and creating data visualizations to assess covariate balance–that is, visually assessing whether the matched individuals are balanced with respect to measured covariates.

Sand Mining - Plugging a Critical Data Gap

May 14, 2024
by Suraj Nair. Excessive sand mining is causing a global ecological crisis. In this blog post, I present why sand mining is one of the most pressing challenges facing the planet, and why persistent data gaps hinder accountability and monitoring. I also discuss an ongoing research project of mine where we combine freely available satellite imagery and machine learning models to build open-source sand mine detection tools that can plug some of these data gaps.

Tactics for Text Mining non-Roman Scripts

April 15, 2024
by Hilary Faxon, Ph.D. & Win Moe. Non-Roman scripts pose particular challenges for text mining. Here, we reflect on a project that used text mining alongside qualitative coding to understand the politicization of online content following Myanmar’s 2021 military coup.

What Are Vowels Made Of? Graphing a Classic Dataset with R

February 13, 2024
by Anna Björklund. Vowels are all around us. Mainstream US English has around twelve unique vowels. How can our brains tell these sounds apart? This blog post will help you answer this question by plotting vowel data from a classic American English dataset by Peterson and Barney (1952).

Creating the Ultimate Sweet

January 30, 2024
by Emma Turtelboom. What is the best Halloween candy? In this blog post, we will identify attributes of popular sweets and create a model to understand how these attributes influence the popularity of the sweet. We’ll discuss alternative model approaches and potential drawbacks, as well as caveats to interpreting the predictions of our model.