Geospatial Analysis

Mapping Time-Series Satellite Images with Google Earth Engine API

July 17, 2023
by Meiqing Li. Remote sensing imagery has the potential to reveal land use patterns and human activities at a planetary scale. For example, nighttime light intensity extracted from can shed light on spatial patterns of human activities and settlements, especially in places where traditional data are scarce. This blog post introduces Google Earth Engine (GEE) as a general purpose tool to extract time-series remote sensing data from GEE data catalog. I walk through using GEE to obtain data, filter by time and geographic region, and visualize it on static and interactive maps.

The Geography of Cannabis: Does California’s dual licensing program (de)criminalize cannabis and drive unnecessary anthropogenic activity in remote rural environments?

August 29, 2023
by Chevon Holmes. When California voters (de)criminalized cannabis production, the state’s dual licensure requirement forced local jurisdictions to create permitting programs or uphold prohibition. Many Counties developed ersatz zoning ordinances to regulate cannabis activities and hired staff to administer local permits. As an inspector, administrator, and project planner for Mendocino County from 2017-2021, I visited hundreds of cultivation sites and production facilities where I learned first-hand how two legal pathways impacted the ways in which operators could transition their businesses. This post details a dataset created to track, aggregate, and analyze the relationship between cannabis infrastructure and licensing.

Ella Belfer

Consultant
Energy and Resources Group

Ella is a PhD student in the Energy and Resources Group. Her research examines water governance in a changing climate, drawing on geo-spatial techniques. Her past work includes applications of topic modelling in climate change adaptation research, and inductive coding of semi-structured interviews.

Working with spatial networks

April 25, 2022

When working with spatial networks, both ArcGIS and Python packages such as NetworkX and iGraph are very useful tools. In the past, I have used both tools to help me better understand spatial network topology and network flow. In this blog post, I hope to share with you some cool features that these tools have...