Machine Learning

Need help with Machine Learning?

Visit Drop-in Hours or Schedule a Consultation: <link to an embedded google calendar OB widget or google form widget> 

Below are the consultant we have available with Machine Learning and other expertise listed.

R Introduction to Machine Learning with tidymodels: Parts 1-2

March 1, 2022, 9:00am
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

R Machine Learning with tidymodels: Parts 1-2

February 22, 2023, 1:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Introduction to Machine Learning: Parts 1-2

October 21, 2021, 1:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Introduction to Machine Learning: Parts 1-2

May 24, 2022, 1:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Machine Learning for Data Science Discovery

March 22, 2023, 7:00pm
Overview of Machine learning, Methods of Linear Regression, Logistic Regression (Classification), and Data Preprocessing. The workshop will consist of a live coding demo with a live question-answer session.

Python Introduction to Machine Learning: Parts 1-2

February 7, 2022, 10:00am
This two-part workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

R Machine Learning with tidymodels: Parts 1-2

November 29, 2022, 10:00am
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

R Machine Learning with tidymodels: Parts 1-2

October 9, 2023, 2:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Machine Learning Fundamentals: Parts 1-2

June 25, 2024, 9:00am
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Introduction to Machine Learning: Parts 1-2

October 21, 2021, 1:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.