Programming Languages

Python Deep Learning: Parts 1-2

October 17, 2022, 2:00pm
The goal of this workshop is to build intuition for deep learning by building, training, and testing models in Python. Rather than a theory-centered approach, we will evaluate deep learning models through empirical results.

R Geospatial Fundamentals: Parts 1-3

March 11, 2024, 9:00am
Geospatial data are an important component of data visualization and analysis in the social sciences, humanities, and elsewhere. The R programming language is a great platform for exploring these data and integrating them into your research. This workshop focuses on fundamental operations for reading, writing, manipulating and mapping vector data, which encodes location as points, lines and polygons.

Python Deep Learning: Parts 1-2

June 12, 2023, 2:00pm
The goal of this workshop is to build intuition for deep learning by building, training, and testing models in Python. Rather than a theory-centered approach, we will evaluate deep learning models through empirical results.

Python Visualization

February 17, 2022, 9:00am
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

CANCELED: Stata Fundamentals: Parts 1-3

December 5, 2022, 9:00am
This workshop is a three-part introductory series that will teach you Stata from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the Stata software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

R Machine Learning with tidymodels: Parts 1-2

October 9, 2023, 2:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Visualization

September 30, 2021, 10:00am
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

Python Data Wrangling and Manipulation with Pandas (5pm-8pm)

March 29, 2022, 5:00pm
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

R Geospatial Fundamentals: Vector Data, Parts 1-2

February 16, 2023, 10:00am
Geospatial data are an important component of data visualization and analysis in the social sciences, humanities, and elsewhere. The R programming language is a great platform for exploring these data and integrating them into your research. This workshop focuses on fundamental operations for reading, writing, manipulating and mapping vector data, which encodes location as points, lines and polygons.

Python Data Wrangling and Manipulation with Pandas

November 15, 2023, 9:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.