Programming Languages

Python Fundamentals: Parts 1-4

May 2, 2022, 9:00am
This four-part, interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

Python Data Wrangling and Manipulation with Pandas

November 15, 2023, 9:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Python Visualization

November 16, 2021, 1:00pm
For this workshop, we'll provide an introduction to visualization with Python. We'll cover visualization theory and plotting with Matplotlib and Seaborn, working through examples in a Jupyter notebook.

Python Data Wrangling and Manipulation with Pandas

March 15, 2023, 2:00pm
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Python Intermediate: Parts 1-3

February 12, 2024, 9:00am
This three-part interactive workshop series teaches you intermediate programming Python for people with previous programming experience equivalent to our Python Fundamentals workshop. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

R Data Wrangling and Manipulation: Parts 1-2

September 12, 2022, 2:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

R Data Wrangling and Manipulation: Parts 1-2

February 1, 2022, 9:00am
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

Python Machine Learning for Data Science Discovery

March 22, 2023, 7:00pm
Overview of Machine learning, Methods of Linear Regression, Logistic Regression (Classification), and Data Preprocessing. The workshop will consist of a live coding demo with a live question-answer session.

Geospatial Fundamentals with QGIS: Parts 1-2

September 17, 2021, 10:00am
This workshop will introduce methods for working with geospatial data in QGIS, a popular open-source desktop GIS program that runs on both PCs and Macs as well as linux computers. Participants will learn how to load, query and visualize point, line and polygon data. We will also introduce basic methods for processing spatial data, which are the building blocks of spatial analysis workflows. Coordinate reference systems and map projections will also be introduced.

R Data Wrangling and Manipulation: Parts 1-2

March 19, 2024, 9:00am
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.