Processing Videos in Python with OpenCV

November 28, 2023
by Leah Lee. Videos and images are quickly becoming the most common type of data we store and interact with. Computer vision technologies derive useful information from these forms of data and are now commonly used in health care, agriculture, transportation, and security. OpenCV is a powerful tool for image processing and computer vision tasks. In this blog post, we will explore how we can use OpenCV in Python to carry out basic computer vision tasks. Specifically, we’ll focus on the simple task of identifying an object from a video and labeling a frame with a box around the object.

Searching for Other Solar Systems

November 21, 2023
by Emma Turtelboom. Over the last three decades, we have discovered over 5000 exoplanets, which are planets outside of our Solar System. With these observations, we can try to answer many questions we have about the universe. For example, how unique is the Solar System? How do planets form? Is there life elsewhere in the Milky Way? We can query the NASA Exoplanet Archive to compare multi-planet systems to the Solar System. Through this, we can compare how similar (or dissimilar!) the systems are.

Hugh Kadhem

Data Science Fellow

Hugh Kadhem is a Ph.D. student in Applied Mathematics, with broad research interests in computational quantum physics and high-performance scientific computing.

Tonya Lindsey, Ph.D.

Data Science Fellow
Institute of Governmental Studies (IGS)

Tonya D. Lindsey is a visiting scholar at the Institute of Governmental Studies and the project director of CRB Nexus: Where Policy Meets Research, an initiative of the California Research Bureau (CRB) at the California State Library. As project director of CRB Nexus, she is developing a community of practice space for California’s policy staff and public scholars. As a CRB senior researcher she uses her expertise in research methods to analyze a wide variety of policy questions at the request of legislators, the governor’s office, and their staff. She received her PhD in sociology...

Hate Speech

The hate speech measurement project began in early 2017 at UC Berkeley’s D-Lab. Our research project applies data science techniques such as machine learning to track changes in hate speech over time and across social media platforms. After three years, we have now published our groundbreaking method that measures hate speech with precision while mitigating the influence of human bias. Read the manuscript here.

Python Fundamentals: Parts 1-3

December 4, 2023, 10:00am
This three-part interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

Python Data Wrangling and Manipulation with Pandas

November 15, 2023, 9:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Jailynne Estevez

Consulting Drop-In Hours: Fri 3pm-5pm

Consulting Areas: Python, SQL, Stata, HTML / CSS, Javascript, Google AppScripts, Databases & SQL, Data Manipulation and Cleaning, Data Science, Data Sources, Data Visualization, Python Programming, Surveys, Sampling & Interviews, Text Analysis, , Bash or Command Line, Excel, Git or Github, Stata

Quick-tip: the fastest way to speak to a consultant is to first ...

Anusha Bishop

Consulting Drop-In Hours: Mon 10am-12pm

Consulting Areas: Python, R, Cloud & HPC Computing, Data Sources, Data Visualization, Geospatial Data, Maps & Analysis, Machine Learning, Research Design, Causal inference, Cluster analysis, Experimental design, Hierarchical Models, High dimensional statistics, Means Tests, Nonparametric methods, Regression Analysis, Software Output Interpretation, Spatial statistics, Bash or Command Line, Excel, Git or Github, RStudio

Quick-tip: the fastest way to speak to a consultant is...

María Martín López

Data Science Fellow

María Martín López is a PhD student in the Cognition area within the Department of Psychology. Her research relates to cognitive computational and quantitative models of individual differences in behaviors, thoughts, and emotions. She is particularly interested in how we can create and leverage novel algorithms to understand, measure, and predict processes relating to externalizing psychopathology (e.g. impulsivity, aggression, substance use). She answers these questions using a range of computational and quantitive models including AI, NLP, SEM, time series analysis, multi-level...