by Amber Galvano. This tutorial builds on my previous post on Python for acoustic analysis, this time focusing on measuring vocal tract resonances without relying on sex-based assumptions. I demonstrate how to process audio files and vowel annotations using an adaptive method that optimizes the acoustic analysis across a recording. Instead of fixing parameters based on generalized vocal tract length correlations, this approach varies them within a defined range for greater accuracy. This not only enhances measurement precision but also avoids requiring (or assuming) speakers’ sex in data collection. Finally, I show how to filter for outliers and create high-quality vowel space visualizations.