R

Nimita Gaggar

Consultant
Public Health

Passionate and driven Public Health graduate student at UC Berkeley with a strong background in program management and a relentless pursuit of excellence. I have 5+ years of experience in program management and operations in the healthcare industry. My academic journey at UC Berkeley has equipped me with a multifaceted skill set, blending strategic thinking, data-driven decision-making, and effective communication. I thrive in fast-paced, dynamic environments and have a proven ability to lead cross-functional teams toward project success.

Nicolas Nunez-Sahr

Consultant
Statistics

I lived in Santiago, Chile until I graduated from high school, and then moved to the US for undergrad at Stanford, where I obtained a Bachelor’s degree from the Statistics Department. I then worked as a Data Scientist in an NLP startup that was based in Bend, OR, which analyzed news articles. I love playing soccer, volleyball, table tennis, flute, guitar, latin music, and meeting new people. I want to get better at mountain biking, whitewater kayaking, chess and computer vision. I find nature astounding, and love finding sources of inspiration.

Ini Umosen

Consultant
Economics

Ini is a PhD candidate in the Department of Economics. She studies topics in labor economics and the economics of education using applied econometrics methods. Current work in progress includes evaluating the impact of school choice systems and investigating gender and racial bias on gig platforms. She is a former Graduate Research Fellow at the California Policy Lab. She has also been a tutor for econometrics, labor economics, and macroeconomics.

R Geospatial Fundamentals: Parts 1-2

February 25, 2025, 2:00pm
In this 2-part workshop series, we will provide an introduction to spatial analyses in R. We discuss the benefits of the additional ‘location' component that defines spatial data and how spatial data frames organize this information. Using the sf (simple features) and terra packages, we'll navigate fundamental operations for reading, writing, manipulating, and visualizing spatial data.

R Copilot Assisted Coding Workshop

February 4, 2025, 10:00am
This workshop provides a beginner-friendly introduction to coding with GitHub Copilot, a popular AI coding assistant. We will start from the basics so you can take advantage of AI assistants to improve your coding and avoid common pitfalls. First, we’ll cover how to install and set-up Visual Studio Code, a free code editor through which we will use GitHub Copilot. Then, we will go through the different features of GitHub Copilot and how to use them to help us code in R.

Finley Golightly

IT Support & Helpdesk Supervisor
Applied Mathematics

Finley joined D-Lab as full-time staff launching their career in Data Science after graduating with a Bachelor's degree in Applied Math from UC Berkeley.

They have been with D-Lab since Fall 2020, formerly as part of the UTech Management team before joining as full-time staff in Fall 2023. They love the learning environment of D-Lab and their favorite part of the job is their co-workers! In their free time, they enjoy reading, boxing, listening to music, and playing Dungeons & Dragons. Feel free to stop by the front desk to ask them any questions or...

R Fundamentals: Parts 1-4

May 5, 2025, 10:00am
This workshop is a four-part introductory series that will teach you R from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the open-sourced R Studio software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

R Machine Learning with tidymodels: Parts 1-2

February 24, 2025, 3:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

R Data Wrangling and Manipulation: Parts 1-2

April 22, 2025, 4:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.

R Data Wrangling and Manipulation: Parts 1-2

April 7, 2025, 2:00pm
It is said that 80% of data analysis is spent on the process of cleaning and preparing the data for exploration, visualization, and analysis. This R workshop will introduce the dplyr and tidyr packages to make data wrangling and manipulation easier. Participants will learn how to use these packages to subset and reshape data sets, do calculations across groups of data, clean data, and other useful tasks.