Data Science

Python Introduction to Machine Learning: Parts 1-2

September 27, 2021, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

R Fundamentals: Parts 1-4

May 1, 2023, 10:00am
This workshop is a four-part introductory series that will teach you R from scratch with clear introductions, concise examples, and support documents. You will learn how to download and install the open-sourced R Studio software, understand data and basic manipulations, import and subset data, explore and visualize data, and understand the basics of automation in the form of loops and functions. After completion of this workshop you will have a foundational understanding to create, organize, and utilize workflows for your personal research.

Python Web APIs

February 8, 2024, 10:00am
In this workshop, we cover how to extract data from the web with APIs using Python. APIs are often official services offered by companies and other entities, which allow you to directly query their servers in order to retrieve their data. Platforms like The New York Times, Twitter and Reddit offer APIs to retrieve data.

Python Fundamentals: Parts 1-3

June 13, 2023, 11:00am
This three-part interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

Python Fundamentals: Parts 1-4

June 21, 2022, 1:00pm
This four-part, interactive workshop series is your complete introduction to programming Python for people with little or no previous programming experience. By the end of the series, you will be able to apply your knowledge of basic principles of programming and data manipulation to a real-world social science application.

Qualtrics Fundamentals

February 20, 2024, 10:00am
Qualtrics is a powerful online tool available to Berkeley community members that can be used for a range of data collection activities. Primarily, Qualtrics is designed to make web surveys easy to write, test, and implement, but the software can be used for data entry, training, quality control, evaluation, market research, pre/post-event feedback, and other uses with some creativity.

Python Introduction to Artificial Neural Networks

November 17, 2021, 9:00am
This workshop presents a brief history of Artificial Neural Networks (ANNs) and an explanation of the intuition behind them; a step-by-step reconstruction of a very basic ANN, and then how to use the scikit-learn library to implement an ANN for solving a classification problem.

Python Data Wrangling and Manipulation with Pandas

October 24, 2022, 3:00pm
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Python Machine Learning Fundamentals: Parts 1-2

April 16, 2024, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Data Wrangling and Manipulation with Pandas

February 15, 2022, 9:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.