Data Sources

Python Web APIs

October 26, 2023, 2:00pm
In this workshop, we cover how to extract data from the web with APIs using Python. APIs are often official services offered by companies and other entities, which allow you to directly query their servers in order to retrieve their data. Platforms like The New York Times, Twitter and Reddit offer APIs to retrieve data.

Democratizing Our Data

August 26, 2021, 10:00am
There is enormous interest in building a better understanding of how evidence and data can inform policy. New possibilities have opened up to enable data to be shared and used across states and agencies. One is a technical approach – the Administrative Data Research Facility – which provides a secure environment within which education, training, and workforce data can be shared across agencies and states. The other is human – the Applied Data Analytics training program – which trains government agency staff how to combine and use the data to serve their agency missions. Over 650 participants from over 150 agencies have participated and produced new products and new networks in the process. This presentation discusses the approach sponsored by the California Department of Social Services, joint with the Department of Education and the Economic Development Department. The D-Lab worked with the Coleridge Initiative to successfully combine the two approaches. The presentation will also address the broader vision of how approaches like this can serve to democratize data for the United States.

Excel Data Analysis: Introduction

June 22, 2022, 3:00pm
This is a three-hour introductory workshop that will provide an overview of Excel, with no prior experience assumed. Attendees will learn how to use functions for handling data and making calculations, how to build charts and pivot tables, and more.

Python Data Wrangling and Manipulation with Pandas

February 14, 2023, 10:00am
Pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with 'relational' or 'labeled' data both easy and intuitive. It enables doing practical, real world data analysis in Python. In this workshop, we'll work with example data and go through the various steps you might need to prepare data for analysis.

Excel Data Analysis: Introduction

January 29, 2024, 9:00am
This is a three-hour introductory workshop that will provide an overview of Excel, with no prior experience assumed. Attendees will learn how to use functions for handling data and making calculations, how to build charts and pivot tables, and more.

Finding Health Statistics and Data

October 21, 2021, 11:00am
Participants in this workshop will learn about some of the issues surrounding the collection of health statistics, and will also learn about authoritative sources of health statistics and data. We will look at tools that let you create custom tables of vital statistics (birth, death, etc.), disease statistics, health behavior statistics, and more.

Propensity Score Matching for Causal Inference: Creating Data Visualizations to Assess Covariate Balance in R

June 10, 2024
by Sharon Green. Although some people consider randomized experiments the gold standard, in many cases, it would be highly unethical to assign individuals to harmful exposures to measure their effects. Modern causal inference techniques help scientists to estimate treatment effects using observational data. In particular, propensity score matching helps scientists estimate causal effects using observational data by matching individuals so that the “treatment” and “control” groups are balanced on measured covariates. After implementing propensity score matching, data visualizations make it easier to assess the quality of the matches before estimating effects. This blog post is a tutorial for implementing propensity score matching and creating data visualizations to assess covariate balance–that is, visually assessing whether the matched individuals are balanced with respect to measured covariates.

Sand Mining - Plugging a Critical Data Gap

May 14, 2024
by Suraj Nair. Excessive sand mining is causing a global ecological crisis. In this blog post, I present why sand mining is one of the most pressing challenges facing the planet, and why persistent data gaps hinder accountability and monitoring. I also discuss an ongoing research project of mine where we combine freely available satellite imagery and machine learning models to build open-source sand mine detection tools that can plug some of these data gaps.

Tactics for Text Mining non-Roman Scripts

April 15, 2024
by Hilary Faxon, Ph.D. & Win Moe. Non-Roman scripts pose particular challenges for text mining. Here, we reflect on a project that used text mining alongside qualitative coding to understand the politicization of online content following Myanmar’s 2021 military coup.

What Are Vowels Made Of? Graphing a Classic Dataset with R

February 13, 2024
by Anna Björklund. Vowels are all around us. Mainstream US English has around twelve unique vowels. How can our brains tell these sounds apart? This blog post will help you answer this question by plotting vowel data from a classic American English dataset by Peterson and Barney (1952).