Data Visualization

Yue Lin

Data Science Fellow 2024-2025
Political Science

Yue is a Ph.D. student in Political Science at the University of California, Berkeley, with a Designated Emphasis on Political Economy. Using mixed methods, she studies foreign lobbying, geopolitical risk, and economic security to understand when, how, and why multinational corporations become the targets and weapons of state power rivalry.

Laura Schmahmann

Instructor
City and Regional Planning

I am a PhD Candidate within the Department of City and Regional Planning at UC Berkeley. My dissertation explores the political economy of warehouse development across California, focusing on two case studies - the Inland Empire and North San Joaquin Valley. I am also a Graduate Student Researcher within the Labor Management Partnerships team at the UC Berkeley Labor Center. I hold a Bachelor of Planning (Honours Class 1) and Master of Philosophy (Planning and Urban Development) both from the University of New South Wales.

Chirag Manghani

Consultant
School of Information

Chirag is a 2nd year graduate at the I-School. Proficient in Python, Java, R, and SQL, he navigates software application development, machine learning and data science. His keen interest lies in data analysis and statistical methods, driving him to bridge theory and practice seamlessly. Chirag's dedication to excellence, adaptable mindset, and innate curiosity define him as a dynamic problem solver in the ever-evolving tech landscape.

Deya Chic

Data Science for Social Justice Fellow 2024
Graduate School of Education

Deya is deeply committed to supporting underrepresented students and contributing to policies that address oppression in higher education. She aims to influence fellow professionals and researchers to adopt a comprehensive approach to addressing systemic issues in the higher education system.

Megumi Tanaka

Data Science for Social Justice Fellow 2024
School of Journalism

I'm currently a graduate student in the AS&T program and the School of Journalism, conducting research in the field of AI ethics education. I'm interested in the intersection of data science, journalism and education!

Violet Davis

Data Science for Social Justice Senior Fellow 2024
MIDS

I am a Masters student studying Data Science with the School of Information. My research involves computational social science projects focused on social justice and equity.

Grace Hu

Data Science for Social Justice Fellow 2024
Bioengineering

Grace is a 3rd year Bioengineering PhD candidate in the joint UC Berkeley-UCSF Graduate Program. Her research lies at the nexus of computational design and 3D-bioprinting to advance tissue engineering for regenerative medicine. She previously studied Materials Science and Engineering (B.S.) and Computer Science (M.S.) at Stanford University, where she investigated printable batteries to power an ultra-affordable scanning electron microscope and explored computer science education research by developing AI models to augment teaching ability.

In her free time she...

Propensity Score Matching for Causal Inference: Creating Data Visualizations to Assess Covariate Balance in R

June 10, 2024
by Sharon Green. Although some people consider randomized experiments the gold standard, in many cases, it would be highly unethical to assign individuals to harmful exposures to measure their effects. Modern causal inference techniques help scientists to estimate treatment effects using observational data. In particular, propensity score matching helps scientists estimate causal effects using observational data by matching individuals so that the “treatment” and “control” groups are balanced on measured covariates. After implementing propensity score matching, data visualizations make it easier to assess the quality of the matches before estimating effects. This blog post is a tutorial for implementing propensity score matching and creating data visualizations to assess covariate balance–that is, visually assessing whether the matched individuals are balanced with respect to measured covariates.

Transparency in Experimental Political Science Research

April 9, 2024
by Kamya Yadav. With the increase in studies with experiments in political science research, there are concerns about research transparency, particularly around reporting results from studies that contradict or do not find evidence for proposed theories (commonly called “null results”). To encourage publication of results with null results, political scientists have turned to pre-registering their experiments, be it online survey experiments or large-scale experiments conducted in the field. What does pre-registration look like and how can it help during data analysis and publication?

Design Your Observational Study with the Joint Variable Importance Plot

March 12, 2024
by Lauren Liao. When evaluating causal inference in observational studies, there often is a natural imbalance in the data. Luckily, variables are often measured alongside that can be helpful for adjustment. However, deciding which variables should be prioritized for adjustment is not trivial – since not all variables are equally important to the intervention or the outcome. I recommend using the joint variable importance plot during the observational study design phase to visualize which variables should be prioritized. This post provides a gentle guide on how to do so and why it is important.