Machine Learning

Need help with Machine Learning?

Visit Drop-in Hours or Schedule a Consultation: <link to an embedded google calendar OB widget or google form widget> 

Below are the consultant we have available with Machine Learning and other expertise listed.

Python Deep Learning: Parts 1-2

April 11, 2023, 2:00pm
The goal of this workshop is to build intuition for deep learning by building, training, and testing models in Python. Rather than a theory-centered approach, we will evaluate deep learning models through empirical results.

Aaron Culich

Consulting Drop-In Hours: By appointment only

Consulting Areas: Python, R, SQL, APIs, Cloud & HPC Computing, Databases & SQL, Bash or Command Line, Git or Github

Quick-tip: the fastest way to speak to a consultant is to first submit a request and then ...

Python Machine Learning Fundamentals: Parts 1-2

February 7, 2023, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

Python Machine Learning Fundamentals: Parts 1-2

April 5, 2023, 10:00am
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.

R Machine Learning with tidymodels: Parts 1-2

February 22, 2023, 1:00pm
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Aniket Kesari, Ph.D.

Former D-Lab Postdoc and Senior Data Science Fellow
Berkeley Law

Aniket Kesari was a postdoc and data science fellow at D-Lab. He is currently a research fellow at NYU’s Information Law Institute, and will join the faculty of Fordham Law School in 2023. His research focuses on law and data science, with particular interests in privacy, cybersecurity, and consumer protection.

Featured D-Lab Blog Post: Introducing “A Three-Step Guide to Training Computational Social Science Ph.D. Students for...

CANCELED: Python Machine Learning Fundamentals: Parts 1-2

November 14, 2022, 4:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.
Registration is unavailable.

Python Deep Learning: Parts 1-2

October 17, 2022, 2:00pm
The goal of this workshop is to build intuition for deep learning by building, training, and testing models in Python. Rather than a theory-centered approach, we will evaluate deep learning models through empirical results.

R Machine Learning with tidymodels: Parts 1-2

November 29, 2022, 10:00am
Machine learning often evokes images of Skynet, self-driving cars, and computerized homes. However, these ideas are less science fiction as they are tangible phenomena that are predicated on description, classification, prediction, and pattern recognition in data. During this two part workshop, we will discuss basic features of supervised machine learning algorithms including k-nearest neighbor, linear regression, decision tree, random forest, boosting, and ensembling using the tidymodels framework. To social scientists, such methods might be critical for investigating evolutionary relationships, global health patterns, voter turnout in local elections, or individual psychological diagnoses.

Python Machine Learning Fundamentals: Parts 1-2

October 4, 2022, 2:00pm
This workshop introduces students to scikit-learn, the popular machine learning library in Python, as well as the auto-ML library built on top of scikit-learn, TPOT. The focus will be on scikit-learn syntax and available tools to apply machine learning algorithms to datasets. No theory instruction will be provided.