Social Network Analysis

Forecasting Social Outcomes with Deep Neural Networks

October 7, 2025
by Paige Park. Our capacity to accurately predict social outcomes is increasing. Deep neural networks and artificial intelligence are crucial technologies pushing this progress along. As these tools reshape how social prediction is done, social scientists should feel comfortable engaging with them and meaningfully contributing to the conversation. But many social scientists are still unfamiliar with and sometimes even skeptical of deep learning. This tutorial is designed to help close that knowledge gap. We’ll walk step-by-step through training a simple neural network for a social prediction task: forecasting population-level mortality rates.

Jane (Mango) Angar

Senior Data Science Fellow 2025-2026, Data Science Fellow 2024-2025
Political Science

Hi! I am a PhD candidate in the Political Science Department at UC Berkeley. My dissertation traces the emergence of disability rights groups in Africa, focusing on Zambia and Malawi, and examines factors influencing their effectiveness. I use mixed methods, including archival work, field interviews, participant observation, and surveys for data collection.

My data analysis techniques include text analysis, social network analysis, means tests, and regressions. In my free time, I enjoy moderately difficult hikes, walks along the beach with my dog, Princess, and...

Joyce Chen

Data Science & AI Fellow 2025-2026
College of Engineering

Joyce is a PhD candidate in Transportation Engineering. Her research focuses on assessing safety and network impacts of autonomous vehicles. She has teaching experiences in statistics and programming. Prior to Berkeley, Joyce obtained her Bachelor of Science in Computer Science from the University of Michigan, and had worked as a software engineer at various companies.

Jose Aguilar

Data Science & AI Fellow 2025-2026
Berkeley Graduate School of Education

Jose R. Aguilar is currently a PhD student in the Policy, Politics, and Leadership program at UC Berkeley’s School of Education. His research utilizes natural language processing, machine learning, and social network analysis to investigate how institutional discourse, algorithmic decision-making, and education policy influence postsecondary access and equity for marginalized students. Before Berkeley, Jose earned his M.A. in Urban Education from Loyola Marymount University and dual B.A./B.S.A. degrees in Government, Latina/o Studies, and Computer Science from the University of...

Weiying Li

Data Science & AI Fellow 2025-2026
Berkeley Graduate School of Education

Weiying is a Ph.D. candidate in Learning Sciences and Human Development at the UC Berkeley School of Education, with a Designated Emphasis in New Media. Her research focuses on designing and evaluating AI dialogs that support students in learning complex science concepts and engaging with social justice topics in science, such as food access. She uses mixed methods to investigate how iterative prompt design, developed in collaboration with teachers, can deepen students’ knowledge integration. Her work contributes to the development of responsible and adaptive AI tools for...

Elijah Mercer

Data Science Fellow 2024-2025
School of Information

Elijah, originally from Newark, New Jersey, now resides in San Francisco, California, dedicated to social and juvenile justice. With a Criminology degree from American University, he began as a research intern at the Investigative Reporting Workshop, focusing on the Digital Divide.

Teaching in Baltimore with Teach for America reinforced his belief in research and data for marginalized communities. In roles at the Coalition Against Insurance Fraud, New York Police Department, and San Francisco District Attorney’s Office, Elijah used data to combat crime. Now...

Christian Caballero

Data Science Fellow 2024-2025
Political Science

Christian Caballero is a Political Science PhD student at the University of California, Berkeley. His research focuses on American politics and political behavior. In particular, he studies the ways in which social networks influence processes of political persuasion and democratic deliberation, as well as how political ideologies develop within subcultures.

He holds a B.A. in Politics and Sociology from New York University and an M.A. in Political Science from the University of California, Berkeley.

Suraj Nair

Data Science Fellow 2023-2024
School of Information

I am a PhD Student at the School of Information. My research interests lie at the intersection of development economics and machine learning, with a focus on the use of large scale digital data and new computational tools to study pressing issues in global development.

Fritz_X_DargesBlue42… Who Are You?

January 14, 2025
by Jonathan Pérez. Reflecting on the complexities of the human experience is paramount to conducting research. Jonathan Pérez, through his exploration of a conspiracy subreddit, reflects on his experience trying to find the human behind the datum. Jonathan critiques the harmful effects of dehumanizing rhetoric and the researcher’s responsibility to navigate ethical implications. In doing so, he establishes three guiding rules to support researchers seeking to humanize their analysis: 1) a researcher must always find the story behind the data; 2) a researcher must protect themselves; 3) a researcher must still humanize participants (even those who perpetuate harmful narratives).

Tom van Nuenen, Ph.D.

Data/Research Scientist, Senior Consultant, and Senior Instructor
D-Lab
Social Sciences
Digital Humanities

I work as a Lecturer, Data Scientist, and Senior Consultant at UC Berkeley's D-Lab. I lead the curriculum design for D-Lab’s data science workshop portfolio, as well as the Digital Humanities Summer Program at Berkeley.

Former research projects include a Research Associate position in the ‘Discovering and Attesting Digital Discrimination’ project at King’s College London (2019-2022) and a researcher-in-residence role for the UK’s National Research Centre on Privacy, Harm Reduction, and Adversarial Influence Online (2022). My research uses Natural Language Processing methods to
...